Christopher B. Choy
slide to right on a mobile phone or press the right array button
$$H: (x, y) \rightarrow \{ (r, \theta) | r(\theta) = x \cos \theta + y \sin \theta \}$$
$$y = -\frac{\cos \theta}{\sin \theta} x + \frac{r}{\sin \theta} \rightarrow r(\theta) = x \cos \theta + y \sin \theta$$
D.H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary Shapes", Pattern Recognition, Vol.13, No.2, p.111-122, 1981
B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV 2004
Feature Extraction | |
Clustering | |
Encoding | |
Spatial Binning | |
Kernel SVM | $$k(x,y) = \left< \Psi(x), \Psi(y) \right>$$ |
|
|
|
|
|
|
Train a linear SVM on features (distribution): which distance metric?
How similar is a distribution $P$ from a distribution $Q$?
$f$-divergence!
$ f : (0, \infty) \rightarrow \mathcal{R}$, convex
$$D_f(P||Q) = \int f\left( \frac{dP}{dQ}\right) dQ$$
In problem 2, we will use the $\chi^2$ kernel for the similarity metric.
$K(\mathbf{x},\mathbf{y})$ is computationaly expensive, non linear!
But in the feature space $\Psi(\cdot)$, it becomes linear ($\infty$ dimension).
Feature Extraction | |
Clustering | |
Encoding | |
Spatial Binning | |
Kernel SVM | $$k(x,y) = \left< \Psi(x), \Psi(y) \right>$$ |
Install VL Feat, an extensive CV library.
Set up the path correctly in the starter code p2.m.
Vary options and see how it affects the performance.
Code extract_dense_sift.m
Image feature extraction
Use Dense SIFT features
randomly select 10,000 features
Code create_dictionary.m
Create dictionary of visual words
Use k-means to find the centroid of clusters.
use vl_kmeans()
Code create_histograms.m
Represent images as histograms
Spatial pyramid