4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Abstract
In many robotics and VR/AR applications, 3D-videos are readily-available sources of input (a continuous sequence of depth images, or LIDAR scans). However, those 3D-videos are processed frame-by-frame either through 2D convnets or 3D perception algorithms. In this work, we propose 4-dimensional convolutional neural networks for spatio-temporal perception that can directly process such 3D-videos using high-dimensional convolutions. For this, we adopt sparse tensors and propose the generalized sparse convolution that encompasses all discrete convolutions. To implement the generalized sparse convolution, we create an open-source auto-differentiation library for sparse tensors that provides extensive functions for high-dimensional convolutional neural networks. We create 4D spatio-temporal convolutional neural networks using the library and validate them on various 3D semantic segmentation benchmarks and proposed 4D datasets for 3D-video perception. To overcome challenges in the 4D space, we propose the hybrid kernel, a special case of the generalized sparse convolution, and the trilateral-stationary conditional random field that enforces spatio-temporal consistency in the 7D space-time-chroma space. Experimentally, we show that convolutional neural networks with only generalized 3D sparse convolutions can outperform 2D or 2D-3D hybrid methods by a large margin. Also, we show that on 3D-videos, 4D spatio-temporal convolutional neural networks are robust to noise, outperform 3D convolutional neural networks and are faster than the 3D counterpart in some cases.
Videos
Visualizations of ScanNet input, prediction, ground truth, and (ground truth - prediction)
Visualizations of Synthia input, prediction, ground truth, and (ground truth - prediction)
ScanNet Semantic Segmentation Challenge
- The Minkowski Net was the Winner of the 2019 ScanNet Semantic Segmentation Challenge
Our paper on Media
External links
- paper on arXiv
- 4D Spatio Temporal Segmentation: Code
- Pretrained weights: Model Zoo
- Minkowski Engine: Code, API
Bibtex
@inproceedings{choy20194d,
title={4d spatio-temporal convnets: Minkowski convolutional neural networks},
author={Choy, Christopher and Gwak, JunYoung and Savarese, Silvio},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3075--3084},
year={2019}
}
Leave a Comment